\qquad

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

For problems 1 and 2, copmute $f^{\prime}(x)$ using the definition of the derivative:

1. $f(x)=x^{2}-2 x+3$
2. $f(x)=2 x^{2}+x+5$

For problems 3-6, differentiate the following functions:
3. $f(x)=x^{12}+4 x^{4}-6 x^{2}+3 x-5$
4. $f(x)=2 x^{7}-9 x^{3}+2 x^{2}+7 x-13$
5. $f(x)=\frac{x^{3}}{x^{2}+5}+\sqrt{x^{3}+8}$
6. $f(x)=\sqrt{\frac{x^{3}+3 x+2}{x^{2}+2 x-1}}$

For problems 7 and 8 , find the equation of the tangent line of the following function at the indicated point:
7. $f(x)=2 x^{2}+x-1$ at the point $x=0$
8. $f(x)=7 x^{3}+2 x^{2}-2$ at the point $x=1$.

For problems 9 and 10, find the relative extrema and classify them for the following functions:
9. $f(x)=x^{3}-x^{4}$
10. $f(x)=4 x^{3}-9 x^{2}-30 x+25$

For problems 11 and 12, graph the following functions. That is, find all relative extrema, determine where the functions are increasing and/or decreasing, and where the functions are concave up and/or down.
11. $f(x)=x^{3}-2 x^{2}-4 x+3$
12. $f(x)=x^{3}-3 x^{2}-144 x-140$
13. If $F(x)=f(g(x))$, where $f(-2)=8, f^{\prime}(-2)=4, f^{\prime}(5)=3, g(5)=-2$ and $g^{\prime}(5)=6$, find $F^{\prime}(5)$.

